segunda-feira, 2 de dezembro de 2013

Forças de Van Der Waals

Momento de Dipolo

O vetor momento de dipolo de uma molécula é dado como o indicador da polaridade da mesma: semelhante a uma pilha (que apresenta dois pólos – negativo e positivo), uma molécula possui regiões onde a diferença de eletronegatividade entre átomos ligantes desloca a nuvem eletrônica para um deles. Isso significa que o par de elétrons compartilhado estará na maior parte do tempo ao redor do mais eletronegativo – na mecânica quântica, diz-se que a densidade de probabilidade de encontrar os elétrons encontra-se maior na região onde a nuvem é mais notável (ao redor do átomo com maior eletronegatividade).
Essas regiões podem ser caracterizadas por uma parte positiva (onde a nuvem eletrônica é menos densa) e uma negativa (onde é mais densa), assim, um vetor pode ser utilizado para representar a diferença de potencial entre esses dois pontos: o vetor nasce no pólo positivo e é direcionado para o negativo.
A molécula é dita polar quando a soma desses vetores produz um vetor resultante de módulo diferente de zero; o contrário vale para uma molécula apolar, onde a soma dos vetores de cada região (delimitada por dois átomos ligantes entre si) resulta num vetor cujo módulo é igual a zero.

Interações Intermoleculares

Dipolo-dipolo

Interações desse tipo são características de substâncias constituídas por moléculas polares, onde o pólo positivo de uma molécula liga-se com o pólo negativo de outra. Assim repetindo-se indefinidas vezes.

Dipolo-dipolo induzido

As interações dipolo permanente – dipolo induzido são observadas quando uma molécula polar deforma a nuvem eletrônica de uma molécula apolar. Assim, induz a formação de um dipolo.

Dipolo instantâneo – dipolo induzido

Os elétrons que constituem a nuvem eletrônica de uma molécula estão em constante movimento, assim, se pudéssemos tirar fotografias dessa nuvem, elas não representariam a mesma imagem.
Ou seja, em moléculas apolares, há possibilidade de tornar-se polar durante um curto período de tempo. Entretanto, esse tempo é o bastante para que deforme a nuvem de outra molécula apolar e induza-a, de modo a formar dois pólos distintos (positivo e negativo). Tendo assim um dipolo induzido.
Verifica-se que a polarizabilidade de uma molécula apolar cresce com o seu tamanho, pois os elétrons da nuvem circundante encontram-se menos atraídos pelo núcleo. Por exemplo: o flúor se encontra no estado gasoso nas CNTP ao ponto que o iodo está no estado sólido.
Como a molécula de iodo é bem maior que a de flúor, é mais facilmente polarizável, assim, mesmo que as duas sejam apolares, as interações dipolo instantâneo – dipolo induzido são mais intensas na primeira substância.

Fontes:
ATKINS, Peter. LORETTA, Jones. Princípios de química: questionando a vida moderna e o meio ambiente; tradução Ricardo Bicca de Alencastro. – 3ª Ed. – Porto Alegre: Bookman, 2006. 968 páginas
.

domingo, 1 de dezembro de 2013

Ligações químicas: iônica , covalente e metálica.



ligação iônica se forma geralmente entre átomos de metais e não-metais ou entremetal e o hidrogênio. O átomo de metal, com 1, 2 ou 3 elétrons em geral, precisa perder seus elétrons. O átomo de não-metal, geralmente com 5, 6 e 7 elétrons, precisa ganhar elétrons. Para que ambos se estabilizem, eles se juntam na proporção adequada e o átomo de metal cede seu(s) elétron(s) para o átomo de não-metal, até que todos estabilizem seu octeto. Como um átomo perdeu elétrons e o outro ganhou, ocorreu a formação de íons positivos (metal) e íons negativos (não-metal), que se atraem mutuamente e formam um retículo cristalino, de forma que o número de cargas positivas deve cancelar o número de cargas negativas (e vice-versa) para que o composto formado seja eletricamente neutro.

Ligação iônica no cloreto de sódio (NaCl) e óxido de alumínio (Al2O3).





ligação covalente se forma quando ambos os átomos envolvidos na ligação precisam ganhar elétrons ou têm 4 elétrons na camada de valência. Se forma em geral entre átomos de não-metal e não-metal ou não-metal e hidrogênio (as ligações entre semimetal e não-metal também costumam ser covalentes). Como um átomo não pode tirar elétrons do outro, eles resolvem fazer um "uso comum" dos elétrons que precisam para completar seu octeto. Ocorre a junção das camadas de valência dos átomos envolvidos e no ponto de contato entre eles são compartilhados pares de elétrons, um de um átomo e o outro do outro átomo. Esses elétrons são contados entre os 2 átomos. Eles se juntam na proporção adequada para que o número de elétrons compartilhados satisfaça o octeto de ambos os átomos.



Na ligação metálica, vários átomos de metais (e alguns semimetais) se juntam e perdem ao mesmo tempo seus elétrons. Como eles não podem perder seus elétrons para o nada (se o átomo tentar fazer isso o elétron volta para ele de novo), eles tentam "empurrar" seus elétrons para o átomo mais próximo. Como esse átomo não quer ganhar elétrons (os metais precisam perder), ele tenta jogar esse elétron de volta para o átomo que o "empurrou" para ele. Isso acontece ao mesmo tempo com todos os átomos envolvidos, de forma que basicamente esses elementos tentam perder mutuamente os elétros e formam um retículo composto de cátions com elétrons "soltos" entre eles. Com isso, a maioria desses átomos consegue completar o octeto, embora alguns ainda não se estabilizaram porque o elétron perdido teima em voltar para ele, como um bumerangue. Os átomos envolvidos em ligação metálica continuamente perdem e recuperam seus elétrons, ao mesmo tempo que tentam não recebê-los de volta. Essa ligação geralmente é formada entre metal e metal (ou metal e semimetal), embora compostos verdadeiros originados da reação entre dois metais sejam raros.
Ligação metálica em amostras de alguns metais.




quarta-feira, 29 de maio de 2013

Exemplos de Reação química

Combustão do etanol

Para haver a combustão do etano(álcool comum), é necessária a presença de oxigênio (por exemplo , do ar). Ambas as substâncias transformam-se , durante a combustão, em duas novas substâncias: água e gás carbônico.



Em equação: etanol + oxigênio = gás carbônico + água

Nessa representação da combustão do etanol, os sinais de mais (+) podem ser lidos como "e". O simbolo ( = ) pode ser lido como "reagem para formar".

Em palavras: Etanol e oxigênio reagem para formar gás carbônico e água.

Os químicos identificam essas substâncias por meio de suas propriedades.São elas que confirmam que , de fato, as substâncias existentes no estado final são diferentes das presentes no estado inicial.

Artigos de "Química dos alimentos"

Confira alguns exemplos dessas e outras curiosidades sobre a “Química dos alimentos” com o tempo rico em informações.


• A cor do leite

De onde vem a cor láctea?
O leite é um dos alimentos mais consumidos em todo o mundo, se define como sendo uma secreção nutritiva de cor esbranquiçada e opaca produzida pelas glândulas mamárias das fêmeas dos mamíferos.

 • Açai na tijela
Açaí: alimento antioxidante.
O segredo está no pigmento que dá coloração ao fruto, isso mesmo, aquela bela cor roxa carrega substâncias que consagram o açaí como sendo um alimento antioxidante, são as chamadas antocianinas. O açaí também é rico em proteínas, gordura vegetal, vitaminas (B1, C e E), minerais e fibras.

•  Bananas escurecidas , por que adquirem essa cor ?
Como evitar que bananas fiquem assim?

As bananas são frutas tropicais, isto é, gostam de calor. A mania que todo mundo tem é de guardá-las na geladeira, pensando que dessa forma irão conservá-las por mais tempo. É aí que todos se enganam, a banana não se conserva no frio, pelo contrário, as baixas temperaturas fazem com que sua casca fique escurecida, como mostra a imagem acima.



Química dos Alimentos

Os corantes e aromatizantes usados nos alimentos.
Os corantes e aromatizantes usados nos alimentos.
A química está presente em nossa alimentação e por essa razão se torna importante o estudo das substâncias que ingerimos diariamente. Foi pensando nisso que elaboramos uma seção especial que aborda a química presente em alimentos, veja alguns dos assuntos que você terá acesso:

- Os alimentos industrializados possuem componentes que vão muito além daqueles encontrados naturalmente em nossa alimentação, até que ponto os aditivos não interferem em nossa saúde?

- Aqui você terá acesso à composição química dos estimulantes, por que determinados alimentos têm a capacidade de interferir em nossas emoções e nosso ânimo?

- Entenda porque ocorre a deterioração dos alimentos e como proceder para que isso não ocorra.

Se informe com as dicas de alimentos que colaboram para seu sorriso, corpo e mente.

- Aprenda a diferenciar os macroelementos dos microelementos (elementos-traço). Quais alimentos você precisa consumir diariamente (uma quantidade superior a 100 mg)? E quais alimentos a necessidade diária é inferior a 100 mg? Uma boa dieta precisa atender essas especificações.

segunda-feira, 27 de maio de 2013

O conceito de reação química

Um experimento para começar
Objetivo: Provocar uma reação química e observar uma evidência de que ela ocorreu.
Você vai precisar de :
Dois copos grandes
Vinagre
Colher de sopa
Bicarbonato de sódio (adquirido , por exemplo, em farmácia)

Procedimento:
1.Faça a experiência sobre um local que possa facilmente ser limpo.Coloque uma colherada de bicarbonato de sódio em um dos copos.No outro, coloque vinagre até cerca de 2 cm de altura.

2.Observe atentamente cada um desses materiais.
3.Despeje o vinagre no copo que contém o bicarbonato de sódio.
4.Volte a observar o copo após 15 minutos e registre o aspecto do que está dentro do copo.